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ABSTRACT

In this paper, we compare the performance of Kolmogorov-Arnold Networks
(KAN) and Multi-Layer Perceptron (MLP) networks on irregular or noisy func-
tions. We control the number of parameters and the size of the training samples to
ensure a fair comparison. For clarity, we categorize the functions into six types:
regular functions, continuous functions with local non-differentiable points, func-
tions with jump discontinuities, functions with singularities, functions with coher-
ent oscillations, and noisy functions. These features are typically not available as
prior knowledge in real applications; therefore, we do not specifically select the
corresponding network structure for each function. Our experimental results indi-
cate that KAN does not always perform best. Furthermore, increasing the size of
training samples can improve performance to some extent. When noise is added
to functions, the irregular features are often obscured by the noise, making it chal-
lenging for both MLP and KAN to extract these features effectively. We hope
these experiments provide valuable insights for future neural network research
and encourage further investigations to overcome these challenges.

1 INTRODUCTION

Since its launch, Kolmogorov-Arnold networks (KAN)(Liu et al., |2024b) has garnered significant
attention. These networks utilize the Kolmogorov-Arnold representation theorem, which posits that
any multivariate continuous function can be expressed as a combination of continuous univariate
functions and addition. Unlike conventional Multi-Layer Perceptron (MLP) networks, KANs incor-
porate learnable activation functions. According to (Liu et al.,[2024b)), this feature provides KANs
with enhanced interpretability and accuracy over MLPs.

Noting the release of KAN 2.0 (Liu et al., |2024a), we will conduct all experiments using the latest
pykan version (v0.2.6) to leverage its optimizations. KAN 2.0 introduced multiplication nodes,
which significantly enhance the fitting of multivariate functions, especially those involving direct
multiplication or division of independent variables. However, the improvement is minimal for the
functions used in this paper, so lower versions of Pykan are also acceptable.

Numerous investigations into KAN applications have rapidly surfaced, covering areas such as smart
energy grid optimization(Wang et al.| 2024)(Tang et al.;2024), chemistry data analysis(Wang et al.,
2024)(Li et al., 2024b)), image classification(Cheon, [2024)(Teymoor Seydi, 2024)(Igali & Shamoi,
2024)), deep function learning(Zhang, 2024), quantum architecture search(Kundu et al.,|2024), medi-
cal image analysis and processing(Li et al., 2024a)(Chen et al.|2024), disease risk predictions(Dong,
2024]), graph learning tasks(Kiamari et al.| [2024)(L1, |2024)(Ghaith Altarabichi, |2024)), asset pricing
models(Wang & Singh}2024)), 3D object detection (in autonomous driving)(Lai et al.}|2024)), senti-
ment analysis(Lawan et al.|[2024), and deep kernel learning(Zinage et al.,[2024).

On the contrary, a growing body of research has highlighted the imperfections of KANs compared
to MLPs. For example, (Zhang| [2024) and (Shen et al., 2024)) noted the vulnerability of KANs to
noise, indicating that even minor noise can lead to a significant rise in test loss. Additionally, (Tran
et al., |2024) claimed that KANs do not outperform MLPs in highly complex datasets and require
considerably more hardware resources. Furthermore, (Yu et al) 2024) noted that MLPs generally
have higher accuracy than KANSs across various standard machine learning tasks, with the exception
of tasks involving symbolic formula representation.
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Moreover, the performance of networks may be influenced by the regularity of functions, prompting
this study to compare the performance of KAN and MLP, across distinct types of functions with
varying degrees of regularity (or noisy functions).

In this investigation, we assess the performance of MLP and KAN in modeling irregular or noisy
functions. To ensure fairness, we control the number of parameters and the amount of training data.
Moreover, we investigate the influence of different optimizers on the accuracy of fitting specific
functions. This research continues directly and naturally from our recent study on the efficacy of
KANsS in fitting noisy functions (Shen et al., 2024).

The structure of this paper is organized as follows: Section [2] provides an introduction to the
Kolmogorov-Arnold Theorem and KANSs, discussing their benefits and limitations, and enumerates
the six types of functions. Section [3|evaluates the performance of MLP and KAN in approximating
regular and irregular functions. Section [ introduces noise to the previously utilized functions and
continues the comparison between MLP and KAN. Finally, Section [5] summarizes the findings of
our experiments.

2 KOMOGOROV-ARNOLD THEOREM AND KANS

The Kolmogorov-Arnold theorem pertains to expressing multivariable continuous functions. Ac-
cording to the theorem, any continuous function involving multiple variables can be expressed
as a combination of continuous single-variable functions and addition (Kolmogorov, |1956) (Kol-
mogorov, |1957) (Arnold, |1957). Formally, it can be stated as:

Theorem 1. [Kolmogorov-Arnold Theorem] Let f : [0,1]" — R be any multivariate continuous
function, there exist continuous univariate functions ¢; and 1;; such that:

2n+1 n

flxr,2,...,2,) = Z i Z¢ij(mj) . (1)
i=1 j=1

Leveraging the Kolmogorov-Arnold theorem, KANSs introduce a novel neural network architecture.
Unlike traditional Multi-Layer Perceptrons (MLPs) which use fixed activation functions, KANs
employ learnable activation functions. This methodology is theoretically advantageous in enhancing
the adaptability of KANs across different datasets and applications.

Unfortunately, Theorem [I] was originally proven non-constructively, lacking a constructive proof
initially. In 2009, (Braun & Griebel, 2009) presented a constructive proof for this theorem. Never-
theless, challenges emerge when handling functions exhibiting irregular patterns, which mathemat-
ical analysis typically categorizes into at least five distinct types. Table [[outlines these types along
with detailed examples.

3 COMPARISON ON IRREGULAR FUNCTIONS

Here, we offer some explanations for the initial five types mentioned in Table We compare
these functions using multiple sets of KAN and MLP networks that have similar parameter counts.
The number of parameters for each network are presented in Table 2} It is worth noting that the
features of these functions are typically not available as prior knowledge in real applications, so we
do not specifically select the corresponding network structure for each function. We implement the
L-BFGS optimizer for these functions as it shows better performance in small-scale training. For
functions with singularities or coherent oscillations, which might need more training samples and
iterations, we also investigate the Adam optimizer’s capability.

3.1 REGULAR FUNCTIONS

First, consider the functions exhibiting strong regularity. Such functions are continuous and dif-
ferentiable at all points, similar to f; and f;. We reconstruct these two functions using two sets
of MLP and KAN networks that have comparable parameters but are trained with different sample
sizes. The outcomes are displayed in Figure[T] It can be observed that for this category of functions,
KAN outperforms MLP.
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Table 1: Several Types of Functions and Their Examples

Smooth
fi(x) = 22 fa(x) =€®
Regular \/ /
Continuous everywhere except at points of non-differentiability
f3(x) = |z fa(x) =1 — /x|
Jump
1, ]2] < 0.5 ~ [1—42? |z[ <05
fo(@) = {07 other Jo(e) = {1, other
Irregular
Singular
frlz) = 3 fs(x)
Coherent oscillation
fQ(x) :COS(%) flO(x) :Cos(l?;z)
Noisy
y = x + n(x), where n(z) denotes additive noise.
Noisy

Table 2: The number of parameters for each KAN and MLP network.

MLP KAN
width | parameter | width  grid k | number of parameters
[1,39,1] 118 [1,5,1] 3 3 120
[1,79,1] 238 [1,10,1] 3 3 240
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Table 3: Time consumption of L-BFGS and
Adam optimizers in fitting functions f7 and fg

Table 4: Time consumption of L-BFGS and
Adam optimizers in fitting functions fy and f1¢

using MLP and KAN using MLP and KAN

Function | Network | Optimizer | Time(s) Function | Network | Optimizer | Time(s)
fr MLP L-BFGS 8.3069 fo MLP L-BFGS 8.4784
fr MLP Adam 4.3064 fo MLP Adam 4.5564
fr KAN L-BFGS | 588.8074 fo KAN L-BFGS | 237.6449
fr KAN Adam 38.4595 fo KAN Adam 38.9890
fs MLP L-BFGS 8.6801 f1o MLP L-BFGS 5.8473
fs MLP Adam 4.8102 fio MLP Adam 4.8208
fs KAN L-BFGS | 359.7498 f10 KAN L-BFGS | 347.3375
I3 KAN Adam 39.4296 J1o KAN Adam 38.6431

3.2 CONTINUOUS FUNCTIONS WITH POINTS WHERE DERIVATIVES DO NOT EXIST

The functions f3 and f; serve as prime examples of this category. They maintain continuity at all
points, while they are non-differentiable at z = 0.

The outcomes are illustrated in Figure 2] For these particular functions, the KAN’s performance is
worse than the MLP’s. Despite the MLP’s slower convergence, it eventually reaches a lower test
loss. Additionally, it can be noted that amplifying the training sample size marginally enhances
the performance of both networks. However, in the vicinity of the non-differentiable point, the
MLP shows more significant improvement than the KAN. More visually, it is evident that the fitting
performance of MLP and KAN around « = 0 (the non-differentiable point) is approximately the
same. Yet, with a larger training sample size, the MLP demonstrates superior fitting performance
near x = 0 compared to the KAN.

3.3 FUNCTIONS WITH JUMP

The examples of this category include f5 and fg. These functions have jump discontinuities at
x = £0.5, where the function values abruptly change between 0 and 1. The experimental outcomes
for these functions are depicted in Figure Results show that the MLP outperforms the KAN.
Moreover, expanding the training dataset size can enhance both networks’ performance to a certain
extent. Nevertheless, KAN consistently fails to match the performance of MLP.

3.4 FUNCTIONS WITH SINGULARITIES

Functions possessing singularities display distinct behaviors, marked by a rapid change rate as they
near these points, with their first derivative tending towards infinity at the singularity. Additionally,
for any chosen continuous interval that omits these singularities, the functions remain continuous
and differentiable across the interval.

To avoid division by zero and guarantee clear fitting results, the ranges of the functions f7 and fg
are limited to [0.001, 1] and [—0.999, 0.999], respectively. We examined the effects of the training
sample size, the number of Epochs, and the selection of optimizer on the fitting performance. As
illustrated in Figure ] simply enlarging the sample size by itself does not substantially enhance the
performance when recovering f7 and fs.

Pykan offers two optional optimizers: Adam and L-BFGS. As depicted in Figure [5| L-BFGS
achieves faster convergence, whereas networks with Adam converges to a lower test loss. How-
ever, it is crucial to recognize that with a fixed learning rate, the improvement from this strategy
is naturally constrained. As illustrated in Table [3] for an identical number of epochs, the training
duration of the network with the L-BFGS optimizer is frequently several times greater than with the
Adam optimizer.

Drawing from earlier experiments and findings, the fitting tests will utilize the Adam optimizer set
with a learning rate of 0.01. As shown in Figure [} KAN outperformed MLP in terms of fitting
functions with singularities at the same number of epochs.
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3.5 FUNCTIONS WITH COHERENT OSCILLATIONS

A unique type of functional singularity, labeled as ’coherent oscillatory singularity,’ is exemplified
by functions fg and f;0. These functions display "unreachable points’ (e.g., x = 0 for fg), where as
the function approaches these points, its values oscillate increasingly rapidly, intersecting the x-axis
infinitely often.

In the experimental phase, taking a similar approach as described in section D. As shown in Figure
and [/} an increase in the sampling rate did not markedly enhance fitting accuracy. Particularly,
within the KAN network framework, the optimizer L-BFGS outperformed Adam for function fo,
while for function f19, Adam showed superior results. On the other hand, when fitting both functions
with an MLP, Adam consistently performed better than L-BFGS.

In a similar manner, Table ] demonstrates that employing the L-BFGS optimizer during the fitting
process usually resulted in an additional increase in computational time. Figure [§]demonstrates that
KAN consistently surpasses MLP when comparing performance over the same number of epochs.

4  COMPARISON ON NOISY FUNCTIONS

In the following, we discuss the roles of noisy functions. We introduce noise to functions previously
discussed and proceed to evaluate the performance of MLP and KAN. According to the conclusions
drawn in the preceding section, we will classify the functions into three categories: regular functions,
functions with localized irregularities, and functions with severe discontinuities.

4.1 ADDING NOISE TO REGULAR FUNCTIONS

We introduce noise to functions exhibiting strong regularity, and subsequently fit these noisy data
using KAN and MLP. The experimental outcomes are depicted in Figure[9] Our observations indi-
cate that KAN achieves a lower test loss with low noise levels but performs worse under high noise
conditions. When comparing the function fitting effect, the conclusion remains consistent: MLP
shows better performance with minor noise interference, but KAN rapidly outperforms MLP as the
training sample size increases.

4.2 ADDING NOISE TO FUNCTIONS WITH LOCALIZED IRREGULARITIES

Noise is subsequently added to f3, f4, f5, and fs. The experimental findings are shown in Figure
For f3 and fy, the network can still capture some of the irregular features with a larger training
sample. However, for f5 and fg, both KAN and MLP perform poorly. The networks still have
difficulty identifying the jump discontinuities, even with an increased sample size.

4.3 ADDING NOISE TO FUNCTIONS WITH SEVERE DISCONTINUITIES

Figure [TT] shows that KAN’s performance surpasses that of MLP when noise is added to functions
with singularities or coherent oscillation. Interestingly, from the perspective of test loss, the impact
of noise on fitting such functions is minimal. This phenomenon highlights the ineffectiveness of
strategies relying solely on increased sampling rates in such instances.

5 CONCLUSION

In this study, we evaluate the effectiveness of KAN and MLP in approximating irregular or noisy
functions. Our analysis concentrates on two main factors: the relative performance of KAN and
MLP in fitting functions with different types according to regularity, and their ability to handle noise
during the fitting process.

Firstly, as identified in (Shen et al., 2024)) and additionally explored in this study, raising the sam-
pling rate is a potent method to enhance the fitting performance of functions f; — fg. Particularly,
this strategy shows greater advantages when handling noisy data versus clean data. Nevertheless,
the improvement in the fitting accuracy for functions with low regularity (f7 — f10) is minimal,
irrespective of the presence of noise.
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Secondly, we also compared the fitting performance under varying Epochs from two distinct per-
spectives: convergence speed and stabilized test loss. KAN exhibits a faster convergence rate than
MLP across all tested functions. However, MLP outperforms KAN on test functions f3 — fs on

stabilized test loss.

Thirdly, via experimental analysis (fitting f7 — fi1¢), it was observed that Adam exceeded L-BFGS
in performance for both networks in every instance, except for function fy. Notably, when fitting

function fg with the KAN, L-BFGS demonstrated better results than Adam.

At last, when dealing with noisy functions, KAN exhibits superior performance over MLP for reg-
ular functions or functions with severe discontinuities. Conversely, for functions with localized

irregularities, MLP outperforms KAN.
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Figure 1: Recover f; and f> independently using KAN and MLP under different training sample
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Figure 2: Recover f3 and f, independently using KAN and MLP.
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Figure 3: Recover f5 and fg independently using KAN and MLP.
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Figure 10: Recover f3, f4, f5 and fg with noise independently using KAN and MLP.
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